
Paxos summary

Diego Ongaro and John Ousterhout

March 6, 2013

This document provides a terse summary of the Basic Paxos (single-decree) consensus protocol as well
as Multi-Paxos. It is intended as an accompaniment to a one-hour video lecture introducing Paxos, which
was developed as part of a user study comparing Paxos with the Raft consensus algorithm. Multi-Paxos
is not specified precisely in the literature; our goal here is to provide a fairly complete specification that
stays close to Leslie Lamport’s original description of Paxos in “The Part-Time Parliament.” The version of
Multi-Paxos described here has not been implemented or proven correct.

1 Basics

• proposal number (n) = (round number, server ID)
• T : a fixed timeout value used in the leader election algorithm
• α: concurrency limit in Multi-Paxos

1.1 Leader election algorithm

• Every T miliseconds, send an empty heartbeat message to every other server.
• A server acts as leader if it has not received a heartbeat message in the last 2T milliseconds from a

server with higher ID.

2 Basic Paxos (Single-decree)

2.1 Persistent state per server

• minProposal: the number of the smallest proposal this server will accept, or 0 if it has never received
a Prepare request

• acceptedProposal: the number of the last proposal the server has accepted, or 0 if it never accepted
any

• acceptedV alue: the value from the most recent proposal the server has accepted, or null if it has never
accepted a proposal

• maxRound: the largest round number the server has seen

2.2 Messages

2.2.1 Prepare (Phase 1)

Request fields:
• n: a new proposal number

Upon receiving a Prepare request, if n ≥ minProposal, the acceptor sets minProposal to n. The response
constitutes a promise to reject Accept messages with proposal numbers less than n in the future.
Response fields:
• acceptedProposal: the acceptor’s acceptedProposal
• acceptedV alue: the acceptor’s acceptedV alue

1



2.2.2 Accept (Phase 2)

Request fields:
• n: the same proposal number used in Prepare
• v: a value, either the highest numbered one from Prepare responses, or if none, then one from a client

request
Upon receiving an Accept request, if n ≥ minProposal, then:
• Set acceptedProposal = n
• Set acceptedV alue = v
• Set minProposal = n

Response fields:
• n: the acceptor’s minProposal

2.3 Proposer Algorithm: write(inputV alue)→ chosenV alue

1. Let n be a new proposal number (increment and persist maxRound).
2. Broadcast Prepare(n) requests to all acceptors.
3. Upon receiving Prepare responses (reply.acceptedProposal, reply.acceptedV alue) from a majority of

acceptors:
• Let v be set as follows: if the maximum reply.acceptedProposal in the replies isn’t 0, use its

corresponding reply.acceptedV alue. Otherwise, use inputV alue.
4. Broadcast Accept(n, v) requests.
5. Upon receiving an Accept response with (reply.n):

• If reply.n > n, set maxRound from n, and start over at step 1.
6. Wait until receiving Accept responses for n from a majority of acceptors.
7. Return v.

3 Multi-Paxos

3.1 Persistent state per acceptor

Each acceptor stores:
• lastLogIndex: the largest entry for which this server has accepted a proposal
• minProposal: the number of the smallest proposal this server will accept for any log entry, or 0 if it

has never received a Prepare request. This applies globally to all entries.
Each acceptor also stores a log, where each log entry i ∈ [1, lastLogIndex] has the following fields:
• acceptedProposal[i]: the number of the last proposal the server has accepted for this entry, or 0 if it

never accepted any, or ∞ if acceptedV alue[i] is known to be chosen
• acceptedV alue[i]: the value in the last proposal the server accepted for this entry, or null if it never

accepted any
Define firstUnchosenIndex as the smallest log index i > 0 for which acceptedProposal[i] <∞

3.2 Persistent state per proposer

• maxRound: the largest round number the proposer has seen

3.3 Soft (volatile) state per proposer

(I’m not doing a very strong separation here between the proposer and the acceptor. I allow proposers to
both read and write into acceptor state sometimes.)
• nextIndex: the index of the next entry to use for a client request
• prepared: True means there is no need to issue Prepare requests (a majority of acceptors has responded

to Prepare requests with noMoreAccepted true); initially false

2



3.4 Messages

3.4.1 Prepare (Phase 1)

Request fields:
• n: a new proposal number
• index: the log entry that the proposer is requesting information about

Upon receiving a Prepare request, if request.n ≥ minProposal, the acceptor sets minProposal to request.n.
The response constitutes a promise to reject Accept requests (for any log entry) with proposals numbered
less than request.n.
Response fields:
• acceptedProposal: the acceptor’s acceptedProposal[index]
• acceptedV alue: the acceptor’s acceptedV alue[index]
• noMoreAccepted: set to true if this acceptor has never accepted a value for a log entry with index

greater than index

3.4.2 Accept (Phase 2)

Request fields:
• n: the same proposal number used in the most recent Prepare
• index: identifies a log entry
• v: a value, either the highest numbered one from a Prepare response, or if none, then one from a client

request
• firstUnchosenIndex: the sender’s firstUnchosenIndex

Upon receiving an Accept request: if n ≥ minProposal, then:
• Set acceptedProposal[index] = n
• Set acceptedV alue[index] = v
• Set minProposal = n

For every index < request.firstUnchosenIndex, if acceptedProposal[index] = n, set acceptedProposal[index]
to ∞.
Response fields:
• n: the acceptor’s minProposal
• firstUnchosenIndex: the acceptor’s firstUnchosenIndex.

3.4.3 Success (Phase 3)

Request fields:
• index: identifies a log entry
• v: the chosen value for entry index

Upon receiving a Success request, set acceptedV alue[index] to v and acceptedProposal[index] =∞.
Response fields:
• firstUnchosenIndex: the acceptor’s firstUnchosenIndex.

When the sender receives the response, if reply.firstUnchosenIndex < firstUnchosenIndex then the
sender sends Success(index = reply.firstUnchosenIndex, value = acceptedV alue[reply.firstUnchosenIndex]).

3.5 Proposer Algorithm: write(inputV alue)→ bool

1. If not leader or not done with leader initialization, return false.
2. If prepared is true:

(a) Let index = nextIndex, increment nextIndex.
(b) Go to step 6.

3. Let index = firstUnchosenIndex and nextIndex = index+ 1.
4. Let n be a new proposal number (increment and persist maxRound)
5. Broadcast Prepare(n, index) requests to all acceptors.
6. Upon receiving Prepare responses (reply.acceptedProposal, reply.acceptedV alue, reply.noMoreAccepted)

from a majority of acceptors:

3



• Let v be set as follows: if the maximum reply.acceptedProposal in the replies isn’t 0, use its
corresponding reply.acceptedV alue. Otherwise, use inputV alue.
• If all acceptors in the majority responded with reply.noMoreAccepted, set prepared = true.

7. Broadcast Accept(index, n, v) requests to all acceptors.
8. Upon receiving an Accept response with (reply.n, reply.firstUnchosenIndex):

• If reply.n > n, set maxRound from reply.n. Set prepared = false. Go to step 1.
• If reply.firstUnchosenIndex ≤ lastLogIndex and
acceptedProposal[reply.firstUnchosenIndex] =∞,
then send Success(index = reply.firstUnchosenIndex, value = acceptedV alue[reply.firstUnchosenIndex]).

9. Upon receiving Accept responses for n from a majority of acceptors:
• Set acceptedProposal[index] =∞ and acceptedV alue[index] = v.

10. If v == inputV alue, return true.
11. Go to step 2.

4 Reconfiguration

• Configuration is a list of ids and addresses of servers, stored as special log entries
• Configuration for choosing entry i determined by latest configuration in log at entry i− α or below.
• α limits concurrency: can’t choose entry i+ α until entry i is chosen

4


